Code No: **R20A7305**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

IV B.Tech I Semester Regular Examinations, November 2024

.

Computer Vision

(B.Tech-AIDS & B.Tech-AIML)										
Roll No										

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

1	A	SECTION-I State different limitations of a pinhole camera and how to	BCLL L2	CO(s) CO-I	Marks [7M]
	B	overcome these limitations. Write a short note on thin lenses. Explain Intrinsic and Extrinsic Parameters OR	L2	CO-I	[7M]
2	A	What is inter-reflection, and why is it important in realistic rendering?	L1	CO-I	[7M]
	В	How do different shading models contribute to our understanding of object surfaces and their features? SECTION-II	L2	CO-I	[7M]
3	A	What is Convolution? Explain the Key Uses of Convolution in Computer Vision	L2	CO-II	[10M]
	B	Define Texture. Explain various Techniques for Shape from Texture	L2	CO-II	[4M]
		OR			
4	A	Discuss the significance of local image features in image analysis. How is the image gradient computed, and what information does it provide about the image?	L2	CO-II	[7M]
	В	Analyze the concept of orientations in image processing. How can orientation information enhance image analysis, particularly in the context of edge and texture detection? SECTION-III	L4	CO-II	[7M]
5	A	Discuss the concept of segmentation by clustering in image processing. How do basic clustering methods, such as K- means, facilitate the separation of distinct regions in an image?	L2	CO-III	[8M]
	В	Discuss the application of Kalman filters in tracking linear dynamical models. How do Kalman filters predict and update the state of a system over time, and what are their advantages in tracking scenarios?	L2	CO-III	[6M]
(UK Discuss the Watershed Algorithm in detail	тэ		[7]] (7]
0	A B	Discuss the watersned Algorithm in detail Discuss the process of fitting lines using the Hough Transform. What mathematical principles underlie this	L3 L3	CO-III CO-III	[7M] [7M]

technique, and how does it handle noisy data in image

R20

processing?

SECTION-IV

		<u>SECTION-17</u>			
7	A	Compare and contrast the methods used for registering rigid	L2	CO-IV	[7M]
		and deformable objects			
	B	Analyse the concept of the bitangent ray manifold in relation	L4	CO-IV	[7M]
		to surface representation and analysis.			
		OR			
8	\boldsymbol{A}	Evaluate the concepts of classification, error, and loss in the	L5	CO-IV	[6M]
		context of machine learning and computer vision.			
	B	How do contour lines provide insight into the shape and	L3	CO-IV	[8M]
		characteristics of a surface, and what mathematical principles	-		L - J
		underpin this concept? Provide examples of applications in			
		computer graphics and modeling			
		SECTION-V			
9	4	Explain the sliding window method for object detection. How	т э	COV	[7]\/[]
	A	does this tooknice work and what are its advertages and		CO-V	
		does this technique work, and what are its advantages and			
		limitations in detecting objects within images?			
	B	How do systems recognize and categorize human activities	L2	CO-V	[7M]
		from video data, and what are the implications for applications			
		such as healthcare and human-computer interaction?			
		OR			
10	\boldsymbol{A}	Discuss the process of object recognition, focusing on	L2	CO-V	[7M]
		categorization and selection.			
	B	Discuss the importance of detecting objects in images within	L2	CO-V	[7M]
		the field of computer vision. What are the main challenges			
		associated with object detection			
		5			
